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Lecture No. 1 

Introduction to Method of Weighted Residuals 

• Solve the differential equation L (u) = p(x) in V 
     where L is a differential operator 

 with boundary conditions        S(u) = g(x) on  Γ  

      where S is a differential operator 

• Find an approximation,  uapp, which satisfies the above equation 

𝑢𝑢𝑎𝑎𝑎𝑎𝑎𝑎 = 𝑢𝑢𝐵𝐵 + �𝛼𝛼𝑘𝑘

𝑁𝑁

𝑘𝑘=1

𝜙𝜙𝑘𝑘(𝑥𝑥) 

   where  αk = unknown parameters which we must find 

              ϕ k =  set of known functions which we define a priori 

• The approximating functions that make up uapp must be selected such that they satisfy: 

• Admissibility conditions: these define a set of entrance requirements. 

• Completeness: ensures that the procedure will work. 
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Basic Definitions 

1. Admissibility of functions 

 In order for a function to be admissible a function must 

• Satisfy the specified boundary conditions 

• Be continuous such that interior domain functional continuity requirements are  

                    satisfied 

 Thus for a function f  to be admissible for our stated problem we must have: 

• Boundary conditions satisfied   ⇒ S ( f )=g(x)   on Γ  

• f  must have the correct degree of functional continuity  

e.g. to satisfy 

  𝐿𝐿(𝑓𝑓) = 𝑑𝑑2𝑓𝑓
𝑑𝑑𝑑𝑑2

 , the function and its first derivative must be continuous. 
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This defines the Sobelov Space requirements (used to describe functional       

continuity). 

Relaxed admissibility conditions: we may back off from some of the stated 

admissibility conditions – either which b.c.’s we satisfy or what degree of 

functional continuity we require 
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2. Measure of a Function 

• Point Norm defines the maximum value and as such represents a point measure of a 

function 

• Point norm of vector  𝑎𝑎 → maximum element of a → amax  

therefore we select the max values of     𝑎𝑎 = �
𝑎𝑎1
𝑎𝑎2� 

• Point norm of a function  f → maximum value of  f within the domain → fmax  

• Euclidian Norm represents an integral measure:  

• The magnitude of a vector may also be expressed as: 

     �𝑎𝑎�2 = 𝑎𝑎12 + 𝑎𝑎22 + ⋯      

                    �𝑎𝑎� = �𝑎𝑎𝑇𝑇𝑎𝑎�1 2⁄
    

This represents the inner produce of the vector onto itself. Note that the mean 

square   value represents an integral measure as well. 
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• Integral measure of a function 

Let’s extend the idea of a norm back to an integral when an infinite number of values 

between x1 and x2 occur.  

𝑎𝑎 = �

𝑎𝑎1
𝑎𝑎2
∙
𝑎𝑎𝑛𝑛

� ⇒ 𝑛𝑛 → ∞ 

Therefore there are an infinite number of elements in the vector.  

This can be represented by the segment  .𝑥𝑥1 < 𝑥𝑥 < 𝑥𝑥2.      

 
The integral norm of the functional values over the segment is defined as: 

‖𝑓𝑓‖𝐸𝐸2 = � 𝑓𝑓2𝑑𝑑𝑥𝑥

𝑑𝑑2

𝑑𝑑1

 

We use a double bar for the Euclidian Norm to distinguish it from a point norm. 

Note that   ‖𝑓𝑓‖𝐸𝐸 ≥ 0 and only equals zero when   f = 0. Therefore, we can use norms as a 

measure of how well our approximation to the solution is doing (e.g. examine 

�𝑢𝑢𝑎𝑎𝑎𝑎𝑎𝑎 − 𝑢𝑢�) 

We’ll be using Euclidian norms. 
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3. Orthogonality of a function 

• We use orthogonality as a filtering process in the selection of functions and in driving the 

error to zero.  

Vectors are orthogonal when ϴ = 90°  

• A test for orthogonality is the dot product  

or inner product: 

 𝑎𝑎 ∙ 𝑏𝑏 = |𝑎𝑎||𝑏𝑏| cosϴ = 𝑎𝑎1𝑏𝑏1 + 𝑎𝑎2𝑏𝑏2  

where 

𝑎𝑎 = 𝑎𝑎1𝚤𝚤1̂ + 𝑎𝑎2𝚤𝚤̂2 

𝑎𝑎 ∙ 𝑏𝑏 = 𝑎𝑎𝑇𝑇𝑏𝑏 = 𝑏𝑏𝑇𝑇𝑎𝑎 

 

Hence if  a ∙ b = 0 , vectors  a and  b  are orthogonal. This concept can now be extended 

to N dimensions. 
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• Extend the vector definitions of orthogonality to the limit as N → ∞  (i.e. to functions)  
 
 

 

 

 

Examine  ∫ 𝑓𝑓 ∙ 𝑔𝑔𝑑𝑑𝑥𝑥𝑑𝑑2
𝑑𝑑1

   
If this equals zero, then the functions are orthogonal.  

Therefore orthogonality of functions depends on both the interval and the functions. 
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• The inner product of 2 functions establishes the condition of orthogonality: 

� 𝑓𝑓 ∙ 𝑔𝑔 𝑑𝑑𝑥𝑥 = 〈𝑓𝑓,𝑔𝑔〉

𝑑𝑑2

𝑑𝑑1

 

 

e.g.  sin 𝑛𝑛𝑛𝑛𝑑𝑑
𝐿𝐿
𝑛𝑛 = 0, 1, 2 … defines a set of functions which are orthogonal over  

the interval [0, L] . The figure shows two such functions which are orthogonal over this 

interval: 

 

 
 

In addition   sin 𝑛𝑛𝑛𝑛𝑑𝑑
𝐿𝐿

   functions vanish at the ends of the interval. This is a useful feature. 
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• For real functions: 

          < ϕ1, ϕ2 > = < ϕ2, ϕ1 > 

           α < ϕ1, ϕ2 > = < α ϕ1, ϕ2 > 

                   < ϕ1, ϕ2 + ϕ3 > = < ϕ1, ϕ2 > + < ϕ1, ϕ3 >  

• Linear Independence: A sequence of functions  ϕ1 (x), ϕ2 (x),…, ϕn (x) is linearly 

independent if: 

        α1 ϕ1 + α2 ϕ2 + α3 ϕ3 +… + αn ϕn = 0 

for any point x within the interval only when αi = 0 for all i.  

        An orthogonal set will be linearly independent. 
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4.   Completeness 

• Consider n functions   ϕ1 ,ϕ2 ,… , ϕn  which are admissible. Therefore they  satisfy 

functional continuity and the specified b.c.’s. In addition these functions are linearly 

independent. 

 

• Now set up the approximate solution: 

• A sequence of linearly independent functions is said to be complete if we have 

convergence as N → ∞ .  

Therefore functions comprise a complete sequence if �𝑢𝑢 − 𝑢𝑢𝑎𝑎𝑎𝑎𝑎𝑎� → 0 

as  N → ∞  where u = the exact solution and uapp = our approximate solution.  

Hence we require convergence of the norm.  

 

• Examples of complete sequences: 

• Sines  

• Polynomials 

• Bessel functions 
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Summary of Basic Definitions  

1. Admissibility: these represent our entrance requirements. 

2. Norm: indicates how we measure things 

3. Orthogonality: allows us to drive the error to zero. 

4. Completeness: tells us if it will work? 

 

Solution Procedure 

Given:  

L(u) = p(x)    in  V 

S(u) = g(x)    on  Γ  

We define an approximate solution in series form  
                                            𝑢𝑢𝑎𝑎𝑎𝑎𝑎𝑎 = 𝑢𝑢𝐵𝐵 + ∑ 𝛼𝛼𝑘𝑘𝜙𝜙𝑘𝑘𝑁𝑁

𝑘𝑘=1                      

where 

  𝛼𝛼𝑘𝑘  are unknown parameters 

  𝜙𝜙𝑘𝑘  are a set of known functions from a complete sequence 
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• We must enforce admissibility  

• Boundary condition satisfaction: 

Ensure that  𝑆𝑆�𝑢𝑢𝑎𝑎𝑎𝑎𝑎𝑎� = 𝑔𝑔 on    Γ  

Let’s pick  𝑢𝑢𝐵𝐵  such that 

     𝑆𝑆(𝑢𝑢𝐵𝐵) = 𝑔𝑔    on Γ 

Since 𝑢𝑢𝐵𝐵 satisfied the b.c.’s, all   𝜙𝜙𝑘𝑘   must vanish on the boundary 

                                        𝑆𝑆(𝜙𝜙𝑘𝑘) = 0   ∀   𝑘𝑘 

Thus each  𝜙𝜙𝑘𝑘 must individually vanish on the boundary. 

• In addition all  𝜙𝜙𝑘𝑘‘s satisfy the functional continuity requirements, they form an 

admissible set of functions. 
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• So far we have enforced satisfaction of 𝑢𝑢𝑎𝑎𝑎𝑎𝑎𝑎 on the boundary. However we violate the 

d.e. in the interior.  

This defines the Residual Error. 

Ԑ𝐼𝐼 = 𝐿𝐿�𝑢𝑢𝑎𝑎𝑎𝑎𝑎𝑎� − 𝑝𝑝(𝑥𝑥) 

          ⇒ 

Ԑ𝐼𝐼 = 𝐿𝐿(𝑢𝑢𝐵𝐵) + �𝛼𝛼𝑘𝑘𝐿𝐿(𝜙𝜙𝑘𝑘) − 𝑝𝑝(𝑥𝑥)
𝑁𝑁

𝑘𝑘=1

 

We note that  Ԑ𝐼𝐼 represents a point measure of the interior error. 

For the exact solution,  Ԑ𝐼𝐼 = 0 ∀ 𝑥𝑥  in V 
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• We must solve for N different unknown coefficients, 𝛼𝛼𝑘𝑘 , k = 1, N.  

To accomplish this we select N different independent functions 𝑤𝑤1,𝑤𝑤2,𝑤𝑤3 …𝑤𝑤𝑁𝑁  and 

let:  

� Ԑ𝐼𝐼 𝑤𝑤𝑖𝑖𝑑𝑑𝑥𝑥 =  < Ԑ𝐼𝐼 ,𝑤𝑤𝑖𝑖  
𝑣𝑣

> = 0  for 𝑖𝑖 = 1, 2, …𝑁𝑁   

Therefore we constrain the inner product of the error and a set of weighting functions 

to be zero.  

Note: if we don’t select wi, i = 1, N  functions to be linearly independent, we’ll get 

duplicate equations and ultimately generate a singular matrix. 

 

• Hence we have posed N constraints on the residual 

𝜙𝜙i’s are designated as the trial functions 

wi’s are designated as the test functions (they test how good the solution is). 
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• Substituting for ԐI into the integral inner product relationship 

�𝛼𝛼𝑘𝑘 < 𝑤𝑤𝑖𝑖 , 𝐿𝐿(𝜙𝜙𝑘𝑘) > =  − < (𝐿𝐿(𝑢𝑢𝐵𝐵) − 𝑝𝑝,𝑤𝑤𝑖𝑖) >                 𝑖𝑖 = 1, 2, …𝑁𝑁
𝑁𝑁

𝑘𝑘=1

 

We define 

𝒂𝒂𝑖𝑖,𝑘𝑘 ≡  〈𝑤𝑤𝑖𝑖 , 𝐿𝐿(𝜙𝜙𝑘𝑘)〉 

𝑐𝑐𝑖𝑖 ≡  − 〈𝐿𝐿(𝑢𝑢𝐵𝐵) − 𝑝𝑝,𝑤𝑤𝑖𝑖〉 

Thus we can write the system of simultaneous algebraic equations 

�𝒂𝒂𝑖𝑖,𝑘𝑘  𝛼𝛼𝑘𝑘 =  𝑐𝑐𝑖𝑖           𝑖𝑖 = 1, 2, …𝑁𝑁
𝑁𝑁

𝑘𝑘=1

 

We note that 

 k = column index;     i = row index 

Hence we now have a set of algebraic equations from our d.e.   

              𝒂𝒂𝑖𝑖,𝑘𝑘 𝛼𝛼𝑘𝑘 = 𝑐𝑐𝑖𝑖  

and we can solve for our unknowns, 𝛼𝛼𝑘𝑘. 
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• In the operator L(u) is linear, we get N linear algebraic equations. When the d.e. is 

nonlinear, the method still works but you get nonlinear algebraic equations. 

 

• Then we require the test functions wi to be orthogonal to the residual, since 

< Ԑ𝐼𝐼 ,𝑤𝑤𝑖𝑖 > = 0 

 

In the limit we would require an infinite number of test functions to be orthogonal to the 

residual. In the limit, the error diminishes to zero. 
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Analogy to vectors 

• Let some vector 𝑎𝑎 = 𝑎𝑎1�̂�𝑒1  + 𝑎𝑎2�̂�𝑒2 represent the error. Thus the coefficients of the vector  

a1 and a2 represent components of some error. �̂�𝑒1 and �̂�𝑒2 are the unit directions and also 

represent the test functions which are orthogonal and linearly independent. 

 

 

 

                                          

 

  

 

• Now let’s constrain a such that  𝑎𝑎 · �̂�𝑒1 = 0 .  This constrains a such that a1= 0. 

• Now select another vector independent of  �̂�𝑒1. We therefore select  �̂�𝑒2 for the next 

orthogonality constraint. 
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Therefore we now force  𝑎𝑎 · �̂�𝑒2 = 0 ⇒ (𝑎𝑎2 �̂�𝑒2) ∙  �̂�𝑒2 = 0 and thus we constrain a2 = 0. 

• Thus we have drive  a  to zero! 

• For a 3-D vector we would need 3 �̂�𝑒𝑖𝑖’s. 

• When we consider a function, an infinite number of test functions will be needed to drive 

the error to zero. However we also need to increase the number of linearly independent 

functions in the trial functions such that we have a sufficient number of degrees of 

freedom. 


